Any-language frame-semantic parsing
نویسندگان
چکیده
We present a multilingual corpus of Wikipedia and Twitter texts annotated with FRAMENET 1.5 semantic frames in nine different languages, as well as a novel technique for weakly supervised cross-lingual frame-semantic parsing. Our approach only assumes the existence of linked, comparable source and target language corpora (e.g., Wikipedia) and a bilingual dictionary (e.g., Wiktionary or BABELNET). Our approach uses a truly interlingual representation, enabling us to use the same model across all nine languages. We present average error reductions over running a state-of-the-art parser on word-to-word translations of 46% for target identification, 37% for frame identification, and 14% for argument identification.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملSLING: A framework for frame semantic parsing
We describe SLING, a framework for parsing natural language into semantic frames. SLING supports general transition-based, neural-network parsing with bidirectional LSTM input encoding and a Transition Based Recurrent Unit (TBRU) for output decoding. The parsing model is trained end-to-end using only the text tokens as input. The transition system has been designed to output frame graphs direct...
متن کاملCan informal genres be better translated by tuning on automatic semantic metrics ?
Even though the informal language of spoken text and web forum genres presents great difficulties for automatic semantic role labeling, we show that surprisingly, tuning statistical machine translation against the SRL-based objective function, MEANT, nevertheless leads more robustly to adequate translations of these informal genres than tuning against BLEU or TER. The accuracy of automatic sema...
متن کاملTowards Zero-Shot Frame Semantic Parsing for Domain Scaling
State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still on...
متن کاملSemi-Supervised and Latent-Variable Models of Natural Language Semantics
This thesis focuses on robust analysis of natural language semantics. A primary bottleneck for semantic processing of text lies in the scarcity of high-quality and large amounts of annotated data that provide complete information about the semantic structure of natural language expressions. In this dissertation, we study statistical models tailored to solve problems in computational semantics, ...
متن کامل